Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation.
نویسندگان
چکیده
Efficient photosynthesis is of fundamental importance for plant survival and fitness. However, in oxygenic photosynthesis, the complex apparatus responsible for the conversion of light into chemical energy is susceptible to photodamage. Oxygenic photosynthetic organisms have therefore evolved several protective mechanisms to deal with light energy. Rapidly inducible non-photochemical quenching (NPQ) is a short-term response by which plants and eukaryotic algae dissipate excitation energy as heat. This review focuses on recent advances in the elucidation of the molecular mechanisms underlying this protective quenching pathway in higher plants.
منابع مشابه
Three different mechanisms of energy dissipation of a desiccation-tolerant moss serve one common purpose: to protect reaction centres against photo-oxidation*
Three different types of non-photochemical de-excitation of absorbed light energy protect photosystem II of the sun- and desiccation-tolerant moss Rhytidium rugosum against photo-oxidation. The first mechanism, which is light-induced in hydrated thalli, is sensitive to inhibition by dithiothreitol. It is controlled by the protonation of a thylakoid protein. Other mechanisms are activated by des...
متن کاملLight energy allocation at PSII under field light conditions: how much energy is lost in NPQ-associated dissipation?
In the field, plants are exposed to fluctuating light, where photosynthesis occurs under conditions far from a steady state. Excess energy dissipation associated with energy quenching of chlorophyll fluorescence (qE) functions as an efficient photo-protection mechanism in photosystem II. PsbS is an important regulator of qE, especially for the induction phase of qE. Beside the regulatory energy...
متن کاملStrategy of Protection of Oxygenic Photosynthesis against Intense Light
The pathways of energy dissipation of excessive absorbed energy in cyanobacteria in comparison with that in higher plants are discussed. Two mechanisms of non-photochemical quenching in cyanobacteria are described. In one case this quenching occurs as light-induced decrease of the fluorescence yield of long-wavelength chlorophylls of the photosystem I trimers induced by inactive reaction center...
متن کاملToward an understanding of the mechanism of nonphotochemical quenching in green plants.
Oxygenic photosynthesis in plants involves highly reactive intermediates and byproducts that can damage the photosynthetic apparatus and other chloroplast constituents. The potential for damage is exacerbated when the amount of absorbed light exceeds the capacity for light energy utilization in photosynthesis, a condition that can lead to decreases in photosynthetic efficiency. A feedback de-ex...
متن کاملThermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation.
Seasonal differences have been observed in the ability of desiccated mosses to dissipate absorbed light energy harmlessly into heat. During the dry summer season desiccation-tolerant mosses were more protected against photo-oxidative damage in the dry state than during the more humid winter season. Investigation of the differences revealed that phototolerance could be acquired or lost even unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EMBO reports
دوره 6 7 شماره
صفحات -
تاریخ انتشار 2005